Mc-Callova plošná standardizace: Porovnání verzí
Řádek 1: | Řádek 1: | ||
− | |||
− | |||
McCallova plošná standardizace je metoda, která se používá k transformaci rozdělení s vysokou šikmostí (nesymetrické rozdělení) na normální rozdělení. Pomocí této metody linearizujeme jinak nelineární vztahy nebo upravujeme tvar rozdělení dat tak, aby se více podobalo rozdělení popsanému Gaussovou křivkou. Jde o transformaci hrubých skórů na normální distribuci transformovaných standardních skórů. Podle axiomu normality totiž předpokládáme, že duševní vlastnosti mají (podobně jako fyzické) v populaci normální rozložení. Předpokládá se tedy, že nerovnoměrné rozložení výsledků je dané spíše charakteristikami testu. | McCallova plošná standardizace je metoda, která se používá k transformaci rozdělení s vysokou šikmostí (nesymetrické rozdělení) na normální rozdělení. Pomocí této metody linearizujeme jinak nelineární vztahy nebo upravujeme tvar rozdělení dat tak, aby se více podobalo rozdělení popsanému Gaussovou křivkou. Jde o transformaci hrubých skórů na normální distribuci transformovaných standardních skórů. Podle axiomu normality totiž předpokládáme, že duševní vlastnosti mají (podobně jako fyzické) v populaci normální rozložení. Předpokládá se tedy, že nerovnoměrné rozložení výsledků je dané spíše charakteristikami testu. | ||
− | + | == Postup == | |
# Vytvoříme sloupec hrubých skórů (HS), od nejnižšího dosažitelného skóru po nejvyšší | # Vytvoříme sloupec hrubých skórů (HS), od nejnižšího dosažitelného skóru po nejvyšší | ||
Řádek 15: | Řádek 13: | ||
[[File:tabulka1.jpg|400px]] | [[File:tabulka1.jpg|400px]] | ||
− | + | === Ukázka postupu === | |
[[File:tabulka2.jpg|400px]] | [[File:tabulka2.jpg|400px]] |
Verze z 24. 4. 2016, 19:43
McCallova plošná standardizace je metoda, která se používá k transformaci rozdělení s vysokou šikmostí (nesymetrické rozdělení) na normální rozdělení. Pomocí této metody linearizujeme jinak nelineární vztahy nebo upravujeme tvar rozdělení dat tak, aby se více podobalo rozdělení popsanému Gaussovou křivkou. Jde o transformaci hrubých skórů na normální distribuci transformovaných standardních skórů. Podle axiomu normality totiž předpokládáme, že duševní vlastnosti mají (podobně jako fyzické) v populaci normální rozložení. Předpokládá se tedy, že nerovnoměrné rozložení výsledků je dané spíše charakteristikami testu.
Postup
- Vytvoříme sloupec hrubých skórů (HS), od nejnižšího dosažitelného skóru po nejvyšší
- K HS přiřadíme absolutní četnost (např. 6 lidí získalo v testu 12 bodů ->k HS 12 přiřadíme absolutní četnost 6)
- V dalším sloupci vyjádříme relativní četnost (absolutní četnost vydělíme N, to je např. počet lidí, kterým byl test zadán)
- Vypočítáme kumulativní relativní četnost (sčítáme relativní četnosti, musí končit hodnotou 1!)
- U diskrétních dat korigujeme na spojitost (k předchozí kumulativní relativní četnosti připočítáváme vždy jen polovinu relativní četnosti)
- Vyčíslíme Z-skór (v Excelu pomocí funkce NORMSINV z = (X - μ) / σ)
- Na základě Z-skóru můžeme převést na libovolný další standardní skór (př. steny, IQ-skór)