Šikmost a špičatost: Porovnání verzí

Řádek 1: Řádek 1:
Mezi další známé popisné charakteristiky můžeme zařadit tzv. míry tvaru, tj. šikmosti a špičatosti. Tyto charakteristiky nám pomáhají určovat, jak moc se rozdělení dat, které jsme získali, podobá nebo se naopak odlišuje od [[normálního rozdělení]], tj. Gaussova. K jejich zjišťování se užívá tzv. centrálních momentů třetího a čtvrtého stupně, přičemž centrální moment k-tého stupně m<sub>k</sub> lze obecně definovat následovně:
+
Mezi další známé popisné charakteristiky můžeme zařadit tzv. míry tvaru, tj. šikmosti a špičatosti. Tyto charakteristiky nám pomáhají určovat, jak moc se rozdělení dat, které jsme získali, podobá nebo se naopak odlišuje od [[normálního rozdělení]], tj. Gaussova. K jejich zjišťování se užívá tzv. centrálních momentů třetího a čtvrtého stupně, přičemž centrální moment k-tého stupně m<sub>k</sub> lze obecně definovat následovně:<br /><br />
[[Soubor:Šikmost.JPG|náhled|Různě šikmá rozdělení podle velikosti koeficientu šikmosti. ]]<br /><br />
 
 
<big><math>m_k=\frac{\sum(x_i-x ̅)^k} {n}</math></big><br /><br />
 
<big><math>m_k=\frac{\sum(x_i-x ̅)^k} {n}</math></big><br /><br />
'''Šikmost''' je charakteristikou, jež nám určuje, kterým směrem je naše [[proměnná]] asymetricky rozložena. Rozlišujeme šikmost kladnou, též pravostrannou, kdy se většina získaných hodnot nachází pod průměrem a šikmost zápornou (levostrannou), kdy se většina hodnot naopak nachází nad průměrem. Míru této asymetričnosti rozložení pak určuje koeficient šikmosti, který dostaneme za pomocí momentu stupně druhého a třetího následovně:<br />
+
'''Šikmost''' je charakteristikou, jež nám určuje, kterým směrem je naše [[proměnná]] asymetricky rozložena. Rozlišujeme šikmost kladnou, též pravostrannou, kdy se většina získaných hodnot nachází pod průměrem a šikmost zápornou (levostrannou), [[Soubor:Šikmost.JPG|náhled|Různě šikmá rozdělení podle velikosti koeficientu šikmosti. ]]kdy se většina hodnot naopak nachází nad průměrem. Míru této asymetričnosti rozložení pak určuje koeficient šikmosti, který dostaneme za pomocí momentu stupně druhého a třetího následovně:<br />
 
<big><math>γ_1=\frac{m_3} {m_2^\frac{3} {2}}</math></big><br /><br />
 
<big><math>γ_1=\frac{m_3} {m_2^\frac{3} {2}}</math></big><br /><br />
 
Nulová hodnota tohoto koeficientu svědčí o rozložení symetrickém, kladná hodnota o pravostranné asymetričnosti a záporná o levostranné.
 
Nulová hodnota tohoto koeficientu svědčí o rozložení symetrickém, kladná hodnota o pravostranné asymetričnosti a záporná o levostranné.

Verze z 4. 5. 2014, 02:55

Mezi další známé popisné charakteristiky můžeme zařadit tzv. míry tvaru, tj. šikmosti a špičatosti. Tyto charakteristiky nám pomáhají určovat, jak moc se rozdělení dat, které jsme získali, podobá nebo se naopak odlišuje od normálního rozdělení, tj. Gaussova. K jejich zjišťování se užívá tzv. centrálních momentů třetího a čtvrtého stupně, přičemž centrální moment k-tého stupně mk lze obecně definovat následovně:

Nelze pochopit (syntaktická chyba): {\displaystyle m_k=\frac{\sum(x_i-x ̅)^k} {n}}

Šikmost je charakteristikou, jež nám určuje, kterým směrem je naše proměnná asymetricky rozložena. Rozlišujeme šikmost kladnou, též pravostrannou, kdy se většina získaných hodnot nachází pod průměrem a šikmost zápornou (levostrannou),

Různě šikmá rozdělení podle velikosti koeficientu šikmosti.

kdy se většina hodnot naopak nachází nad průměrem. Míru této asymetričnosti rozložení pak určuje koeficient šikmosti, který dostaneme za pomocí momentu stupně druhého a třetího následovně:

Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle γ_1=\frac{m_3} {m_2^\frac{3} {2}}}

Nulová hodnota tohoto koeficientu svědčí o rozložení symetrickém, kladná hodnota o pravostranné asymetričnosti a záporná o levostranné.

Různě špičatá rozdělení podle velikosti koeficientu špičatosti.

Špičatost udává, jak se v rozložení četností vyskytují velmi vysoké a velmi nízké hodnoty. I tuto míru lze udat pomocí koeficientu, k jehož výpočtu se opět využívají centrální momenty a na základě jehož výsledku lze usuzovat na více špičaté než normální rozdělení (tzv. leptokurtické) či méně špičaté než normální rozdělení (tzv. platykurtické):

Různě špičatá rozdělení podle velikosti koeficientu špičatosti.

Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle γ_2=\frac{m_4} {m_2^2}-3}

Podobně jako u koeficientu šikmosti, i zde γ2 = 0 značí rozdělení normální a odchylky značí, že rozdělení je špičatější (kladný koeficient) nebo plošší (záporný koeficient).

Zdroje

  1. Hendl, J. (2009). Přehled statistických metod: analýza a metaanalýza dat. Praha: Portál.