Shannonovo chápání informace: Porovnání verzí

(Založena nová stránka s textem „ === Claude Elwood Shannon === Claude Elwood Shannon byl americký elektrotechnik a matematik, nazývaný též "''otec teorie informace''". Teorii inform…“)
 
 
(Není zobrazeno 16 mezilehlých verzí od 5 dalších uživatelů.)
Řádek 1: Řádek 1:
 
 
=== Claude Elwood Shannon ===
 
=== Claude Elwood Shannon ===
  
Claude Elwood Shannon byl americký elektrotechnik a matematik, nazývaný též "''otec teorie informace''". Teorii informace, která významně ovlivnila celou řadu oborů, stvořil v [[Bell|Bellových]] laboratořích a v roce 1948 publikoval v časopise Bell System Technical Journal pod článkem "''The Mathematical Theory of Communication''".  
+
[[Claude Shannon|Claude Elwood Shannon]] byl americký elektrotechnik a matematik, nazývaný též "''otec teorie informace''". Teorii informace, která významně ovlivnila celou řadu oborů, stvořil v [[Bell|Bellových]] laboratořích a v roce 1948 publikoval v časopise Bell System Technical Journal pod článkem "''The Mathematical Theory of Communication''".  
 
 
 
 
 
Společně s [[Weaver|Warrenem Weaverem]] je také autorem obecného [[model komunikace|modelu komunikace]].
 
Společně s [[Weaver|Warrenem Weaverem]] je také autorem obecného [[model komunikace|modelu komunikace]].
 
 
'''Shannonova definice informace''':  
 
'''Shannonova definice informace''':  
„Informace je míra množství neurčitosti nebo nejistoty o nějakém náhodném ději odstraněná realizací tohoto děje.“
+
„Informace je míra množství neurčitosti nebo nejistoty o nějakém náhodném ději odstraněná realizací tohoto děje.“<ref>PŘICHYSTAL, Jan. Úvod do teorie informace. In: Úvod do teorie informace [online]. 2007 [cit. 2015-01-24]. Dostupné z: https://akela.mendelu.cz/~jprich/predn/teoinf.pdf</ref>
 
+
== Pojem BIT ==
 
 
 
 
=== Pojem BIT ===
 
 
 
 
Shannon zevšeobecnil myšlenky R.Hartleyho, vydané v knize "''Přenos informace''". Oddělil syntaktickou část od sémantické, tedy odhlédl od významu zprávy a rozdělil ji na nejmenší možné jednotky - na jednotlivé znaky. Vyjádřil přenos informace matematicky. Jednotku informace nazval '''binary digit''' (dvojková číslice), neboli zkráceně '''bit'''.  
 
Shannon zevšeobecnil myšlenky R.Hartleyho, vydané v knize "''Přenos informace''". Oddělil syntaktickou část od sémantické, tedy odhlédl od významu zprávy a rozdělil ji na nejmenší možné jednotky - na jednotlivé znaky. Vyjádřil přenos informace matematicky. Jednotku informace nazval '''binary digit''' (dvojková číslice), neboli zkráceně '''bit'''.  
 
+
Jeden [[bit]] nese informaci odpovědi na otázku - ANO-NE; máme tedy dvě možnosti a víme, že jedna z nich je platná. Tyto možnosti lze vyjádřit čísly (1,0). Počet bitů tedy určuje, kolikrát muselo dojít k rozhodnutí, než jsme došli ke správnému výsledku.
Jeden '''bit''' nese informaci odpovědi na otázku - ANO-NE; máme tedy dvě možnosti a víme, že jedna z nich je platná. Tyto možnosti lze vyjádřit čísly (1,0). Počet bitů tedy určuje, kolikrát muselo dojít k rozhodnutí, než jsme došli ke správnému výsledku.
 
 
 
 
Tento počet rozhodnutí vypočteme vzorcem:
 
Tento počet rozhodnutí vypočteme vzorcem:
 
 
'''<big>N = s<sup>n</sup></big>'''
 
'''<big>N = s<sup>n</sup></big>'''
 
 
'''N''' je počet možných zpráv,
 
'''N''' je počet možných zpráv,
 
'''n''' je délka zprávy (počítáno na jednotlivé znaky),
 
'''n''' je délka zprávy (počítáno na jednotlivé znaky),
 
'''s''' je dvě (počet možností 1,0 - pravděpodobnost obou možností je stejná)
 
'''s''' je dvě (počet možností 1,0 - pravděpodobnost obou možností je stejná)
 
 
 
počet bitů vypočteme vzorcem:
 
počet bitů vypočteme vzorcem:
 
 
'''<big>I = log<sub>2</sub> N</big>'''
 
'''<big>I = log<sub>2</sub> N</big>'''
 
 
1 bit je množství informace, které odstraňuje neurčitost, tedy [[Entropie v pojetí informační vědy|entropii]].
 
1 bit je množství informace, které odstraňuje neurčitost, tedy [[Entropie v pojetí informační vědy|entropii]].
 
+
== Entropie informace ==
 
 
=== '''Entropie Informace''' ===
 
 
 
 
Entropie (neuspořádanost nebo neurčitost) je základním pojmem v [[teorie informace|teorii informace]]. Znamená míru neurčitosti ve zprávě. Naopak informaci chápal jako odstranění této neurčitosti.
 
Entropie (neuspořádanost nebo neurčitost) je základním pojmem v [[teorie informace|teorii informace]]. Znamená míru neurčitosti ve zprávě. Naopak informaci chápal jako odstranění této neurčitosti.
 
Tedy '''s narůstající informací klesá entropie a naopak'''. Shannonova entropie má význam střední hodnoty.
 
Tedy '''s narůstající informací klesá entropie a naopak'''. Shannonova entropie má význam střední hodnoty.
 
 
Definoval ji takto:
 
Definoval ji takto:
 
+
''"Předpokládáme existenci nějakého systému a současně předpokládáme samostatnou událost (nezávislou na předchozích událostech), která způsobí přechod systému do nového stavu. Předpokládejme n vzájemně se vylučujících stavů x, pravděpodobnost stavu i je p(i), pak entropie stavu x bude:''<ref>OTÝPKA, Miloslav. Entropie. In: Coptel Internetový portál [online]. 2011 [cit. 2015-01-24]. Dostupné z: http://coptel.coptkm.cz/index.php?action=2&doc=21116&docGroup=167&cmd=0&instance=1</ref>
''"Předpokládáme existenci nějakého systému a současně předpokládáme samostatnou událost (nezávislou na předchozích událostech), která způsobí přechod systému do nového stavu. Předpokládejme n vzájemně se vylučujících stavů x, pravděpodobnost stavu i je p(i), pak entropie stavu x bude:''
+
[[File:vzorec.png|200px]]
 
 
 
 
  
 
Míra neurčitosti nemůže být v záporných hodnotách. Znaménko minus zde znamená, že entropie je záporná veličina.
 
Míra neurčitosti nemůže být v záporných hodnotách. Znaménko minus zde znamená, že entropie je záporná veličina.
 
 
Shannon vyjádřil množství informace v jedné zprávě záporným logaritmem její pravděpodobnosti.
 
Shannon vyjádřil množství informace v jedné zprávě záporným logaritmem její pravděpodobnosti.
 
 
 
'''Shannonova entropie bodech:'''
 
'''Shannonova entropie bodech:'''
 +
*"Entropie jevu se rovná nule, když je tento jev jednoznačně určený.
 +
*Entropie libovolného jevu se blíží k hodnotě nula (maximální určitosti systému), když se pravděpodobnost jevu blíží hodnotě jedna nebo nula.
 +
*Entropie je kladné číslo, v krajním případě (pro P=1 nebo P=0) rovné 0.
 +
*Entropie je maximální, při rovnoměrném rozložení pravděpodobnosti všech možných jevů.
 +
*Entropie složeného pokusu, v kterém záleží na pořadí pokusů a kde jsou jevy navzájem nezávislé, je celková entropie rovna součtu entropií jednotlivých pokusů."<ref>Biokybernetika. In: Katedra biofyziky - Přírodovědecká fakulta [online]. [cit. 2015-01-24]. Dostupné z: http://biofyzika.upol.cz/userfiles/file/biokybernetika_6_informace.doc</ref>
  
"Entropie jevu se rovná nule, když je tento jev jednoznačně určený.
+
==Odkazy==
 
+
=== Reference ===
Entropie libovolného jevu se blíží k hodnotě nula (maximální určitosti systému), když se pravděpodobnost jevu blíží hodnotě jedna nebo nula.
+
<references />
 
+
=== Literatura ===
Entropie je kladné číslo, v krajním případě (pro P=1 nebo P=0) rovné 0.
+
Průkopníci informačního věku (10.): Claude Shannon. CIO Business World [online]. 2010, č. 11 [cit. 2015-01-24]. Dostupné z: http://businessworld.cz/cio-bw-special/prukopnici-informacniho-veku-10-claude-shannon-6969
 
 
Entropie je maximální, při rovnoměrném rozložení pravděpodobnosti všech možných jevů.
 
  
Entropie složeného pokusu, v kterém záleží na pořadí pokusů a kde jsou jevy navzájem nezávislé, je celková entropie rovna součtu entropií jednotlivých pokusů."
+
[[Kategorie: Informační studia a knihovnictví]]
 +
[[Kategorie:Teoretické a obecné aspekty knihovnictví a informací]]
 +
[[Kategorie:Články k ověření učitelem Souček M]]

Aktuální verze z 12. 3. 2018, 14:44

Claude Elwood Shannon

Claude Elwood Shannon byl americký elektrotechnik a matematik, nazývaný též "otec teorie informace". Teorii informace, která významně ovlivnila celou řadu oborů, stvořil v Bellových laboratořích a v roce 1948 publikoval v časopise Bell System Technical Journal pod článkem "The Mathematical Theory of Communication". Společně s Warrenem Weaverem je také autorem obecného modelu komunikace. Shannonova definice informace: „Informace je míra množství neurčitosti nebo nejistoty o nějakém náhodném ději odstraněná realizací tohoto děje.“[1]

Pojem BIT

Shannon zevšeobecnil myšlenky R.Hartleyho, vydané v knize "Přenos informace". Oddělil syntaktickou část od sémantické, tedy odhlédl od významu zprávy a rozdělil ji na nejmenší možné jednotky - na jednotlivé znaky. Vyjádřil přenos informace matematicky. Jednotku informace nazval binary digit (dvojková číslice), neboli zkráceně bit. Jeden bit nese informaci odpovědi na otázku - ANO-NE; máme tedy dvě možnosti a víme, že jedna z nich je platná. Tyto možnosti lze vyjádřit čísly (1,0). Počet bitů tedy určuje, kolikrát muselo dojít k rozhodnutí, než jsme došli ke správnému výsledku. Tento počet rozhodnutí vypočteme vzorcem: N = sn N je počet možných zpráv, n je délka zprávy (počítáno na jednotlivé znaky), s je dvě (počet možností 1,0 - pravděpodobnost obou možností je stejná) počet bitů vypočteme vzorcem: I = log2 N 1 bit je množství informace, které odstraňuje neurčitost, tedy entropii.

Entropie informace

Entropie (neuspořádanost nebo neurčitost) je základním pojmem v teorii informace. Znamená míru neurčitosti ve zprávě. Naopak informaci chápal jako odstranění této neurčitosti. Tedy s narůstající informací klesá entropie a naopak. Shannonova entropie má význam střední hodnoty. Definoval ji takto: "Předpokládáme existenci nějakého systému a současně předpokládáme samostatnou událost (nezávislou na předchozích událostech), která způsobí přechod systému do nového stavu. Předpokládejme n vzájemně se vylučujících stavů x, pravděpodobnost stavu i je p(i), pak entropie stavu x bude:[2] Vzorec.png

Míra neurčitosti nemůže být v záporných hodnotách. Znaménko minus zde znamená, že entropie je záporná veličina. Shannon vyjádřil množství informace v jedné zprávě záporným logaritmem její pravděpodobnosti. Shannonova entropie bodech:

  • "Entropie jevu se rovná nule, když je tento jev jednoznačně určený.
  • Entropie libovolného jevu se blíží k hodnotě nula (maximální určitosti systému), když se pravděpodobnost jevu blíží hodnotě jedna nebo nula.
  • Entropie je kladné číslo, v krajním případě (pro P=1 nebo P=0) rovné 0.
  • Entropie je maximální, při rovnoměrném rozložení pravděpodobnosti všech možných jevů.
  • Entropie složeného pokusu, v kterém záleží na pořadí pokusů a kde jsou jevy navzájem nezávislé, je celková entropie rovna součtu entropií jednotlivých pokusů."[3]

Odkazy

Reference

  1. PŘICHYSTAL, Jan. Úvod do teorie informace. In: Úvod do teorie informace [online]. 2007 [cit. 2015-01-24]. Dostupné z: https://akela.mendelu.cz/~jprich/predn/teoinf.pdf
  2. OTÝPKA, Miloslav. Entropie. In: Coptel Internetový portál [online]. 2011 [cit. 2015-01-24]. Dostupné z: http://coptel.coptkm.cz/index.php?action=2&doc=21116&docGroup=167&cmd=0&instance=1
  3. Biokybernetika. In: Katedra biofyziky - Přírodovědecká fakulta [online]. [cit. 2015-01-24]. Dostupné z: http://biofyzika.upol.cz/userfiles/file/biokybernetika_6_informace.doc

Literatura

Průkopníci informačního věku (10.): Claude Shannon. CIO Business World [online]. 2010, č. 11 [cit. 2015-01-24]. Dostupné z: http://businessworld.cz/cio-bw-special/prukopnici-informacniho-veku-10-claude-shannon-6969