Inzulín: Porovnání verzí
Řádek 1: | Řádek 1: | ||
− | + | == Zařazení Inzulínu == | |
+ | |||
+ | Inzulín je hormonem slinivky břišní. <ref>Merkunová, A., Orel, M. (2013). Anatomie a fyziologie člověka pro humanitní obory. (1. vyd., s. 203). České Budějovice: Grada. </ref> Slinivka břišní (Pancreas), je smíšenou žlázou s exokrinní (pars exocrina pancreatis) a endokrinní (pars endocrina pancreatis) částí. Exokrinní část pankreatu produkuje pankreatickou trávicí šťávu. <ref>Přidalová, M., Riegrová, J. (2009). Funkční anatomie II. (1. vyd., s. 93). Olomouc: Hanex.</ref> Endokrinní část je tvořena asi 1-2 miliony drobných, 0,1-0,5 mm velkých, buněčných okrsků, označovaných jako Langerhansovy ostrůvky, které jsou roztroušeny v exokrinní tkáni pankreatu. Langerhansovy ostrůvky tvoří asi 1,5 % objemu celé slinivky břišní. <ref>Čihák, R. (2013) Anatomie II. (3. vyd., s. 135). Praha: Grada.</ref> Langerhansovy ostrůvky tvoří a uvolňují hormony do krevního řečiště a skládají se ze 4 typů sekrečních buněk. <ref name="kittnar">Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> [[Soubor:Umístění slinivky břišní.jpg|thumb|Umístění slinivky břišní|245x245px]] | ||
* A-buňky produkují hormon Glukagon (svým účinkem je antagonistou Inzulínu) | * A-buňky produkují hormon Glukagon (svým účinkem je antagonistou Inzulínu) | ||
Řádek 5: | Řádek 7: | ||
* D-buňky produkují hormon Somatostatin (snižuje produkci Inzulínu i Glukagonu) | * D-buňky produkují hormon Somatostatin (snižuje produkci Inzulínu i Glukagonu) | ||
* F-buňky produkují Pankreatický polypeptid (jeho funkce je zatím nejasná) <ref>Patton, K. & Thibodeau, G. (2010). Anatomy & physiology (7. vyd., s. 563). USA.</ref> | * F-buňky produkují Pankreatický polypeptid (jeho funkce je zatím nejasná) <ref>Patton, K. & Thibodeau, G. (2010). Anatomy & physiology (7. vyd., s. 563). USA.</ref> | ||
− | Středem každého ostrůvku potom prochází kapilára, do jejiž krve se přímo vylučují vytvořené hormony. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> | + | Středem každého ostrůvku potom prochází kapilára, do jejiž krve se přímo vylučují vytvořené hormony. <ref name="kittnar">Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> |
− | == | + | == Charakteristika Inzulínu == |
− | Lidský Inzulín je proteohormon, složený z 51 aminokyselin. | + | Lidský Inzulín je proteohormon, složený z 51 aminokyselin. Aminokyseliny Inzulínu jsou organizovány do dvou polypeptidových řetězců A a B, navzájem spojených dvěma disulfidickými můstky. Gen pro Inzulín je kódován na 11. chromozomu. <ref name="piťhová">Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (1. vyd., s. 13). Semily: Geum.</ref> [[Soubor:Struktura lidského Inzulínu.gif|Struktura lidského Inzulínu|600x600px]] |
− | == | + | == Mechanismus Inzulínu == |
− | === | + | === Vznik Inzulínu === |
− | Inzulín se tvoří právě v B-buňkách, které představují zhruba 60 % buněk Langerhansových [[Soubor:Vznik molekuly Inzulínu.jpg|thumb|Vznik molekuly Inzulínu|300x300px]]ostrůvků. Samotná tvorba potom probíhá v ribozomech (vznik preprohormonu Preproinzulínu) a v endoplazmatickém retikulu (vznik prohormonu Proinzulínu). Dále se v Golgiho aparátu vytvořený Inzulín s fragmenty peptidů zabuduje do sekrečních váčků, odkud je spolu s malým množstvím Proinzulínu (který nemá biologický účinek) vylučován do krve. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> | + | Inzulín se tvoří právě v B-buňkách, které představují zhruba 60 % buněk Langerhansových [[Soubor:Vznik molekuly Inzulínu.jpg|thumb|Vznik molekuly Inzulínu|300x300px]]ostrůvků. Samotná tvorba potom probíhá v ribozomech (vznik preprohormonu Preproinzulínu) a v endoplazmatickém retikulu (vznik prohormonu Proinzulínu). Dále se v Golgiho aparátu vytvořený Inzulín s fragmenty peptidů zabuduje do sekrečních váčků, odkud je spolu s malým množstvím Proinzulínu (který nemá biologický účinek) vylučován do krve. <ref name="kittnar">Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> |
− | === | + | === Regulace sekrece Inzulínu === |
− | Inzulín se uvolňuje v tzv. pulzních dávkách, avšak trvale po celých 24 hodin denně. Důvod, proč se Inzulín uvolňuje trvale, je potřeba udržení citlivosti inzulínového receptoru a potlačení jaterní glukoneogeneze v podmínkách nalačno. Hlavním sekretagonem Inzulínu je glukóza, jejíž koncentrace v hodnotách 5,5-17,0 mmol/l krve vyvolá účinnou sekreci Inzulínu. <ref>Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (1. vyd., s. 13). Semily: Geum.</ref> Tedy hlavním podnětem pro sekreci Inzulínu je zvýšení krevní glykémie. <ref>Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.</ref> Po jídle začíná stoupat sekreci Inzulínu již do 10 minut. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> | + | Inzulín se uvolňuje v tzv. pulzních dávkách, avšak trvale po celých 24 hodin denně. Důvod, proč se Inzulín uvolňuje trvale, je potřeba udržení citlivosti inzulínového receptoru a potlačení jaterní glukoneogeneze v podmínkách nalačno. Hlavním sekretagonem Inzulínu je glukóza, jejíž koncentrace v hodnotách 5,5-17,0 mmol/l krve vyvolá účinnou sekreci Inzulínu. <ref name="piťhová">Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (1. vyd., s. 13). Semily: Geum.</ref> Tedy hlavním podnětem pro sekreci Inzulínu je zvýšení krevní glykémie. <ref name="despopoulos">Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.</ref> Po jídle začíná stoupat sekreci Inzulínu již do 10 minut. <ref name="kittnar">Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> |
Stimulace B-buněk k vyloučení inzulínu probíhá v tomto sledu: | Stimulace B-buněk k vyloučení inzulínu probíhá v tomto sledu: | ||
# Vzrůst plazmatické glukózy. | # Vzrůst plazmatické glukózy. | ||
Řádek 34: | Řádek 36: | ||
# Nárust vápníkových iontů v B-buňce vyvolá exocytózu Inzulínu. | # Nárust vápníkových iontů v B-buňce vyvolá exocytózu Inzulínu. | ||
# Dochází ke znovuotevření draslíkových kanálů . | # Dochází ke znovuotevření draslíkových kanálů . | ||
− | # Repolarizace B-buňky (návrat do výchozího stavu).<ref>Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.</ref> | + | # Repolarizace B-buňky (návrat do výchozího stavu). <ref name="despopoulos">Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.</ref> |
− | === | + | === Působení inzulínu === |
− | Inzulín je anabolický hormon, jehož úkolem je snižování hodnoty glykémie tím, že glukózu z krve dostává do cílových buněk, které mají pro Inzulín specifický receptor. Nejtypičtějšími cílovými buňkami pro Inzulín jsou buňky tkáně svalové, jaterní a tukové.<ref>Yang, Z., Scott, C., Mao, C., Tang, J., & Farmer, A. (2014). Resistance Exercise Versus Aerobic Exercise for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sports Medicine, 44(4), 487-499. </ref> Inzulín tedy působí anabolicky tím, že podporuje tvorbu tuků a ukládání glukózy do zásoby ve formě svalového a jaterního glykogenu. <ref>Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.</ref> V cílových tkáních se Inzulín váže na membránové receptory, které tvoří 2 α-podjednotky na vnější straně membrány a 2 β-podjednotky procházející membránou. Jakmile se Inzulín naváže na receptor, dochází ke kaskádovité reakci fosforylací, které vedou k zabudování glukózových transportérů do plazmatických membrán cílových buněk. Glukózové transportéry (zejména skupina GLUT transportérů s označením GLUT-1 až GLUT-13) poté přenášení glukózu do buněk. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref>[[Soubor:Působení Inzulínu na cílovou buňku.jpg|Působení Inzulínu na cílovou buňku|400x400px]] | + | Inzulín je anabolický hormon, jehož úkolem je snižování hodnoty glykémie tím, že glukózu z krve dostává do cílových buněk, které mají pro Inzulín specifický receptor. Nejtypičtějšími cílovými buňkami pro Inzulín jsou buňky tkáně svalové, jaterní a tukové.<ref>Yang, Z., Scott, C., Mao, C., Tang, J., & Farmer, A. (2014). Resistance Exercise Versus Aerobic Exercise for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sports Medicine, 44(4), 487-499. </ref> Inzulín tedy působí anabolicky tím, že podporuje tvorbu tuků a ukládání glukózy do zásoby ve formě svalového a jaterního glykogenu. <ref name="despopoulos">Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.</ref> V cílových tkáních se Inzulín váže na membránové receptory, které tvoří 2 α-podjednotky na vnější straně membrány a 2 β-podjednotky procházející membránou. Jakmile se Inzulín naváže na receptor, dochází ke kaskádovité reakci fosforylací, které vedou k zabudování glukózových transportérů do plazmatických membrán cílových buněk. Glukózové transportéry (zejména skupina GLUT transportérů s označením GLUT-1 až GLUT-13) poté přenášení glukózu do buněk. <ref name="kittnar">Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref>[[Soubor:Působení Inzulínu na cílovou buňku.jpg|Působení Inzulínu na cílovou buňku|400x400px]] |
− | === | + | === Odbourávání inzulínu === |
− | Poločas Inzulínu je 5-8 minut, přičemž je odbouráván hlavně v játrech, svalech a ledvinách. <ref>Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.</ref> Nejvšší degradece inzulínu je však způsobena inzulinázou v játrech a to až v míře 50 %. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> | + | Poločas Inzulínu je 5-8 minut, přičemž je odbouráván hlavně v játrech, svalech a ledvinách. <ref name="despopoulos">Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.</ref> Nejvšší degradece inzulínu je však způsobena inzulinázou v játrech a to až v míře 50 %. <ref name="kittnar">Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.</ref> |
− | == | + | == Diabetes mellitus == |
Diabetes mellitus, v překladu úplavice cukrová (slangově cukrovka), je onemocnění projevující se sníženou funkcí metabolismu sacharidů. U obou dvou typů Diabetes mellitus (I. a II. typu) se jedná o důsledky relativního, anebo absolutního nedostatku Inzulínu. Diabetes mellitus I. typu je autoimunitní onemocnění. V důsledku zničení B-buněk pankreatu vlastním imunitním systémem dochází k nedostatečné produkci inzulínu. Naproti tomu Diabetes mellitus II. typu je způsoben sníženou citlivostí tkání vůči Inzulínu, jehož je v krvi dostatečné, anebo i zvýšenné množství. Oba dva typy Diabetu logicky vedou k chronické hyperglykémii a paradoxnímu nedostatku glukózy zejména ve tkáni jaterní a svalové. <ref>Whitehead, N., & White, H. (2013). Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. Journal Of Human Nutrition & Dietetics, 26(2), 111-125.</ref> | Diabetes mellitus, v překladu úplavice cukrová (slangově cukrovka), je onemocnění projevující se sníženou funkcí metabolismu sacharidů. U obou dvou typů Diabetes mellitus (I. a II. typu) se jedná o důsledky relativního, anebo absolutního nedostatku Inzulínu. Diabetes mellitus I. typu je autoimunitní onemocnění. V důsledku zničení B-buněk pankreatu vlastním imunitním systémem dochází k nedostatečné produkci inzulínu. Naproti tomu Diabetes mellitus II. typu je způsoben sníženou citlivostí tkání vůči Inzulínu, jehož je v krvi dostatečné, anebo i zvýšenné množství. Oba dva typy Diabetu logicky vedou k chronické hyperglykémii a paradoxnímu nedostatku glukózy zejména ve tkáni jaterní a svalové. <ref>Whitehead, N., & White, H. (2013). Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. Journal Of Human Nutrition & Dietetics, 26(2), 111-125.</ref> | ||
− | == | + | == Odkazy == |
+ | |||
+ | === Reference === | ||
− | |||
<references /> | <references /> | ||
− | [[Kategorie: Neurofyziologie | + | |
+ | === Použitá literatura === | ||
+ | |||
+ | * Čihák, R. (2013). ''Anatomie II.'' (3. vyd., s. 135). Praha: Grada. | ||
+ | * Despopoulos, A., & Silbernagl, S. (2003). ''Color atlas of physiology'' (5. vyd., s. 282). Germany: Wemding. | ||
+ | * Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). ''Lékařská fyziologie.'' (1. vyd., s. 526). Praha: Grada. | ||
+ | * Merkunová, A., Orel, M. (2013). ''Anatomie a fyziologie člověka pro humanitní obory.'' (1. vyd., s. 203). České Budějovice: Grada. | ||
+ | * Patton, K. & Thibodeau, G. (2010). ''Anatomy & physiology'' (7. vyd., s. 563). USA. | ||
+ | * Piťhová, P., & Štechová, K. (2009). ''Léčba inzulínovou pumpou pro praxi'' (1. vyd., s. 13). Semily: Geum. | ||
+ | * Přidalová, M., Riegrová, J. (2009). ''Funkční anatomie II.'' (1. vyd., s. 93). Olomouc: Hanex. | ||
+ | |||
+ | === Zdroje obrázků === | ||
+ | |||
+ | * 1. http://www.webmd.com/diabetes/ss/slideshow-type-2-diabetes-overview | ||
+ | * 2. http://www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2005/Dresser/My%20favorite%20Protein.html | ||
+ | * 3. http://www.wikiskripta.eu/index.php/Soubor:Insulin.jpg | ||
+ | * 4. http://cs.wikipedia.org/wiki/Inzulin#mediaviewer/File:Metabolismus_inzulin-glukosa.jpg | ||
+ | |||
+ | === Doporučená literatura === | ||
+ | |||
+ | * Despopoulos, A., & Silbernagl, S. (2003). ''Color atlas of physiology'' (5. vyd., s. 282). Germany: Wemding. | ||
+ | * Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). ''Lékařská fyziologie.'' (1. vyd., s. 526). Praha: Grada. | ||
+ | * Piťhová, P., & Štechová, K. (2009). ''Léčba inzulínovou pumpou pro praxi'' (1. vyd., s. 13). Semily: Geum. | ||
+ | |||
+ | === Externí odkazy === | ||
+ | |||
+ | * [http://www.wikiskripta.eu/index.php/Inzulin] | ||
+ | * [http://cs.wikipedia.org/wiki/Inzulin] | ||
+ | * [http://cs.wikipedia.org/wiki/Diabetes_mellitus] | ||
+ | |||
+ | === Související články === | ||
+ | |||
+ | *[[Glykémie]] | ||
+ | *[[Slinivka břišní]] | ||
+ | *[[langerhansonovy ostrůvky]] | ||
+ | *[[Diabetes mellitus]] | ||
+ | |||
+ | === Klíčová slova === | ||
+ | |||
+ | Inzulín, B-buňky, glykémie, Diabetes mellitus | ||
+ | |||
+ | [[Kategorie: Neurofyziologie]] |
Verze z 30. 11. 2014, 16:44
Obsah
Zařazení Inzulínu
Inzulín je hormonem slinivky břišní. [1] Slinivka břišní (Pancreas), je smíšenou žlázou s exokrinní (pars exocrina pancreatis) a endokrinní (pars endocrina pancreatis) částí. Exokrinní část pankreatu produkuje pankreatickou trávicí šťávu. [2] Endokrinní část je tvořena asi 1-2 miliony drobných, 0,1-0,5 mm velkých, buněčných okrsků, označovaných jako Langerhansovy ostrůvky, které jsou roztroušeny v exokrinní tkáni pankreatu. Langerhansovy ostrůvky tvoří asi 1,5 % objemu celé slinivky břišní. [3] Langerhansovy ostrůvky tvoří a uvolňují hormony do krevního řečiště a skládají se ze 4 typů sekrečních buněk. [4]
- A-buňky produkují hormon Glukagon (svým účinkem je antagonistou Inzulínu)
- B-buňky produkují hormon Inzulín
- D-buňky produkují hormon Somatostatin (snižuje produkci Inzulínu i Glukagonu)
- F-buňky produkují Pankreatický polypeptid (jeho funkce je zatím nejasná) [5]
Středem každého ostrůvku potom prochází kapilára, do jejiž krve se přímo vylučují vytvořené hormony. [4]
Charakteristika Inzulínu
Lidský Inzulín je proteohormon, složený z 51 aminokyselin. Aminokyseliny Inzulínu jsou organizovány do dvou polypeptidových řetězců A a B, navzájem spojených dvěma disulfidickými můstky. Gen pro Inzulín je kódován na 11. chromozomu. [6]
Mechanismus Inzulínu
Vznik Inzulínu
Inzulín se tvoří právě v B-buňkách, které představují zhruba 60 % buněk Langerhansových
ostrůvků. Samotná tvorba potom probíhá v ribozomech (vznik preprohormonu Preproinzulínu) a v endoplazmatickém retikulu (vznik prohormonu Proinzulínu). Dále se v Golgiho aparátu vytvořený Inzulín s fragmenty peptidů zabuduje do sekrečních váčků, odkud je spolu s malým množstvím Proinzulínu (který nemá biologický účinek) vylučován do krve. [4]
Regulace sekrece Inzulínu
Inzulín se uvolňuje v tzv. pulzních dávkách, avšak trvale po celých 24 hodin denně. Důvod, proč se Inzulín uvolňuje trvale, je potřeba udržení citlivosti inzulínového receptoru a potlačení jaterní glukoneogeneze v podmínkách nalačno. Hlavním sekretagonem Inzulínu je glukóza, jejíž koncentrace v hodnotách 5,5-17,0 mmol/l krve vyvolá účinnou sekreci Inzulínu. [6] Tedy hlavním podnětem pro sekreci Inzulínu je zvýšení krevní glykémie. [7] Po jídle začíná stoupat sekreci Inzulínu již do 10 minut. [4] Stimulace B-buněk k vyloučení inzulínu probíhá v tomto sledu:
- Vzrůst plazmatické glukózy.
- Nárust glukózy v B-buňce pankreatu (Langerhansových ostrůvků).
- Zrychluje se oxidace již zvýšené hladiny glukózy v B-buňkách.
- To vede k nárustu koncentrace ATP v B-buňce.
- ATP-řízené draslíkové kanály se zavírají.
- Nastává depolarizace B-buňky.
- Potenciálem řízené vápníkové kanály se otevírají.
- Vzrůstá koncentrace vápníkových iontů v B-buňce.
- Nárust vápníkových iontů v B-buňce vyvolá exocytózu Inzulínu.
- Dochází ke znovuotevření draslíkových kanálů .
- Repolarizace B-buňky (návrat do výchozího stavu). [7]
Působení inzulínu
Inzulín je anabolický hormon, jehož úkolem je snižování hodnoty glykémie tím, že glukózu z krve dostává do cílových buněk, které mají pro Inzulín specifický receptor. Nejtypičtějšími cílovými buňkami pro Inzulín jsou buňky tkáně svalové, jaterní a tukové.[8] Inzulín tedy působí anabolicky tím, že podporuje tvorbu tuků a ukládání glukózy do zásoby ve formě svalového a jaterního glykogenu. [7] V cílových tkáních se Inzulín váže na membránové receptory, které tvoří 2 α-podjednotky na vnější straně membrány a 2 β-podjednotky procházející membránou. Jakmile se Inzulín naváže na receptor, dochází ke kaskádovité reakci fosforylací, které vedou k zabudování glukózových transportérů do plazmatických membrán cílových buněk. Glukózové transportéry (zejména skupina GLUT transportérů s označením GLUT-1 až GLUT-13) poté přenášení glukózu do buněk. [4]
Odbourávání inzulínu
Poločas Inzulínu je 5-8 minut, přičemž je odbouráván hlavně v játrech, svalech a ledvinách. [7] Nejvšší degradece inzulínu je však způsobena inzulinázou v játrech a to až v míře 50 %. [4]
Diabetes mellitus
Diabetes mellitus, v překladu úplavice cukrová (slangově cukrovka), je onemocnění projevující se sníženou funkcí metabolismu sacharidů. U obou dvou typů Diabetes mellitus (I. a II. typu) se jedná o důsledky relativního, anebo absolutního nedostatku Inzulínu. Diabetes mellitus I. typu je autoimunitní onemocnění. V důsledku zničení B-buněk pankreatu vlastním imunitním systémem dochází k nedostatečné produkci inzulínu. Naproti tomu Diabetes mellitus II. typu je způsoben sníženou citlivostí tkání vůči Inzulínu, jehož je v krvi dostatečné, anebo i zvýšenné množství. Oba dva typy Diabetu logicky vedou k chronické hyperglykémii a paradoxnímu nedostatku glukózy zejména ve tkáni jaterní a svalové. [9]
Odkazy
Reference
- ↑ Merkunová, A., Orel, M. (2013). Anatomie a fyziologie člověka pro humanitní obory. (1. vyd., s. 203). České Budějovice: Grada.
- ↑ Přidalová, M., Riegrová, J. (2009). Funkční anatomie II. (1. vyd., s. 93). Olomouc: Hanex.
- ↑ Čihák, R. (2013) Anatomie II. (3. vyd., s. 135). Praha: Grada.
- ↑ 4,0 4,1 4,2 4,3 4,4 4,5 Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.
- ↑ Patton, K. & Thibodeau, G. (2010). Anatomy & physiology (7. vyd., s. 563). USA.
- ↑ 6,0 6,1 Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (1. vyd., s. 13). Semily: Geum.
- ↑ 7,0 7,1 7,2 7,3 Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.
- ↑ Yang, Z., Scott, C., Mao, C., Tang, J., & Farmer, A. (2014). Resistance Exercise Versus Aerobic Exercise for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sports Medicine, 44(4), 487-499.
- ↑ Whitehead, N., & White, H. (2013). Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. Journal Of Human Nutrition & Dietetics, 26(2), 111-125.
Použitá literatura
- Čihák, R. (2013). Anatomie II. (3. vyd., s. 135). Praha: Grada.
- Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.
- Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.
- Merkunová, A., Orel, M. (2013). Anatomie a fyziologie člověka pro humanitní obory. (1. vyd., s. 203). České Budějovice: Grada.
- Patton, K. & Thibodeau, G. (2010). Anatomy & physiology (7. vyd., s. 563). USA.
- Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (1. vyd., s. 13). Semily: Geum.
- Přidalová, M., Riegrová, J. (2009). Funkční anatomie II. (1. vyd., s. 93). Olomouc: Hanex.
Zdroje obrázků
- 1. http://www.webmd.com/diabetes/ss/slideshow-type-2-diabetes-overview
- 2. http://www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2005/Dresser/My%20favorite%20Protein.html
- 3. http://www.wikiskripta.eu/index.php/Soubor:Insulin.jpg
- 4. http://cs.wikipedia.org/wiki/Inzulin#mediaviewer/File:Metabolismus_inzulin-glukosa.jpg
Doporučená literatura
- Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (5. vyd., s. 282). Germany: Wemding.
- Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (1. vyd., s. 526). Praha: Grada.
- Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (1. vyd., s. 13). Semily: Geum.
Externí odkazy
Související články
Klíčová slova
Inzulín, B-buňky, glykémie, Diabetes mellitus