Shannonovo chápání informace: Porovnání verzí
Řádek 2: | Řádek 2: | ||
=== Claude Elwood Shannon === | === Claude Elwood Shannon === | ||
− | [[Claude Elwood Shannon]] byl americký elektrotechnik a matematik, nazývaný též "''otec teorie informace''". Teorii informace, která významně ovlivnila celou řadu oborů, stvořil v [[Bell|Bellových]] laboratořích a v roce 1948 publikoval v časopise Bell System Technical Journal pod článkem "''The Mathematical Theory of Communication''". | + | [[Claude Shannon|Claude Elwood Shannon]] byl americký elektrotechnik a matematik, nazývaný též "''otec teorie informace''". Teorii informace, která významně ovlivnila celou řadu oborů, stvořil v [[Bell|Bellových]] laboratořích a v roce 1948 publikoval v časopise Bell System Technical Journal pod článkem "''The Mathematical Theory of Communication''". |
Verze z 6. 2. 2015, 17:16
Claude Elwood Shannon
Claude Elwood Shannon byl americký elektrotechnik a matematik, nazývaný též "otec teorie informace". Teorii informace, která významně ovlivnila celou řadu oborů, stvořil v Bellových laboratořích a v roce 1948 publikoval v časopise Bell System Technical Journal pod článkem "The Mathematical Theory of Communication".
Společně s Warrenem Weaverem je také autorem obecného modelu komunikace.
Shannonova definice informace: „Informace je míra množství neurčitosti nebo nejistoty o nějakém náhodném ději odstraněná realizací tohoto děje.“[1]
Pojem BIT
Shannon zevšeobecnil myšlenky R.Hartleyho, vydané v knize "Přenos informace". Oddělil syntaktickou část od sémantické, tedy odhlédl od významu zprávy a rozdělil ji na nejmenší možné jednotky - na jednotlivé znaky. Vyjádřil přenos informace matematicky. Jednotku informace nazval binary digit (dvojková číslice), neboli zkráceně bit.
Jeden bit nese informaci odpovědi na otázku - ANO-NE; máme tedy dvě možnosti a víme, že jedna z nich je platná. Tyto možnosti lze vyjádřit čísly (1,0). Počet bitů tedy určuje, kolikrát muselo dojít k rozhodnutí, než jsme došli ke správnému výsledku.
Tento počet rozhodnutí vypočteme vzorcem:
N = sn
N je počet možných zpráv, n je délka zprávy (počítáno na jednotlivé znaky), s je dvě (počet možností 1,0 - pravděpodobnost obou možností je stejná)
počet bitů vypočteme vzorcem:
I = log2 N
1 bit je množství informace, které odstraňuje neurčitost, tedy entropii.
Entropie Informace
Entropie (neuspořádanost nebo neurčitost) je základním pojmem v teorii informace. Znamená míru neurčitosti ve zprávě. Naopak informaci chápal jako odstranění této neurčitosti. Tedy s narůstající informací klesá entropie a naopak. Shannonova entropie má význam střední hodnoty.
Definoval ji takto:
"Předpokládáme existenci nějakého systému a současně předpokládáme samostatnou událost (nezávislou na předchozích událostech), která způsobí přechod systému do nového stavu. Předpokládejme n vzájemně se vylučujících stavů x, pravděpodobnost stavu i je p(i), pak entropie stavu x bude:[2]
Míra neurčitosti nemůže být v záporných hodnotách. Znaménko minus zde znamená, že entropie je záporná veličina.
Shannon vyjádřil množství informace v jedné zprávě záporným logaritmem její pravděpodobnosti.
Shannonova entropie bodech:
"Entropie jevu se rovná nule, když je tento jev jednoznačně určený.
Entropie libovolného jevu se blíží k hodnotě nula (maximální určitosti systému), když se pravděpodobnost jevu blíží hodnotě jedna nebo nula.
Entropie je kladné číslo, v krajním případě (pro P=1 nebo P=0) rovné 0.
Entropie je maximální, při rovnoměrném rozložení pravděpodobnosti všech možných jevů.
Entropie složeného pokusu, v kterém záleží na pořadí pokusů a kde jsou jevy navzájem nezávislé, je celková entropie rovna součtu entropií jednotlivých pokusů."[3]
Reference
- ↑ PŘICHYSTAL, Jan. Úvod do teorie informace. In: Úvod do teorie informace [online]. 2007 [cit. 2015-01-24]. Dostupné z: https://akela.mendelu.cz/~jprich/predn/teoinf.pdf
- ↑ OTÝPKA, Miloslav. Entropie. In: Coptel Internetový portál [online]. 2011 [cit. 2015-01-24]. Dostupné z: http://coptel.coptkm.cz/index.php?action=2&doc=21116&docGroup=167&cmd=0&instance=1
- ↑ Biokybernetika. In: Katedra biofyziky - Přírodovědecká fakulta [online]. [cit. 2015-01-24]. Dostupné z: http://biofyzika.upol.cz/userfiles/file/biokybernetika_6_informace.doc
Literatura
Průkopníci informačního věku (10.): Claude Shannon. CIO Business World [online]. 2010, č. 11 [cit. 2015-01-24]. Dostupné z: http://businessworld.cz/cio-bw-special/prukopnici-informacniho-veku-10-claude-shannon-6969