Podmíněná pravděpodobnost a závislé a nezávislé jevy: Porovnání verzí

m
m
Řádek 44: Řádek 44:
 
<math>a navíc P(A∩B∩C)=P(A).P(B).P(C) </math>
 
<math>a navíc P(A∩B∩C)=P(A).P(B).P(C) </math>
 
<ref name="KÖNIGOVÁ, Marie." />
 
<ref name="KÖNIGOVÁ, Marie." />
<ref name="BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ">BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ. Průvodce základními statistickými metodami. 1. vyd. Praha: Grada, 2010, s. 54-54. Expert (Grada). ISBN 978-80-247-3243-5."</ref>
+
<ref name="BUDÍKOVÁ, Marie">BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ. Průvodce základními statistickými metodami. 1. vyd. Praha: Grada, 2010, s. 54-54. Expert (Grada). ISBN 978-80-247-3243-5."></ref>
 
<ref name="CALDA, Emil a Václav DUPAČ." />
 
<ref name="CALDA, Emil a Václav DUPAČ." />
 
===Závislé a nezávislé jevy ===
 
===Závislé a nezávislé jevy ===
Řádek 80: Řádek 80:
 
| S || pravděpodobnostní prostor
 
| S || pravděpodobnostní prostor
 
|}
 
|}
<ref name="BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ" />
+
<ref name="BUDÍKOVÁ" />
 
<ref name="CALDA, Emil a Václav DUPAČ." />
 
<ref name="CALDA, Emil a Václav DUPAČ." />
  
 
<references/>
 
<references/>

Verze z 18. 8. 2015, 07:43

Pravděpodobnost jevu

Pravděpodobnost jevu je podle Laplaceovy definice poměrem počtu případů příznivých k počtu případů možných bez realizace experimentu.
Jinými slovy zjišťujeme jakou máme šanci, že daný jev nastane.

Výsledek uvádíme v procentech nebo v intervalu <0,1>. Přičemž 1 znamená výsledek jistý a 0 nemožný.
Uskutečníme-li pokus, pak počítáme relativní četnost
[1] [2]

Výsledky náhodného pokusu musí splňovat podmínky:

  • nemohou padnout dva výsledky současně
  • jeden z výsledků nastane vždy
  • každý výsledek je stejně možný

př. Hod kostkou. Jaká je pravděpodobnost, že padne číslo 2
Ω={1,2,3,4,5,6}
A={2}
m=6
m(A)=1


Pravděpodobnost, že na hrací kostce padne číslo 2, je

Podmíněná pravděpodobnost

Uvažujme pravděpodobnostní prostor (Ω, A, P) a jev B ϵ A, který má nenulovou pravděpodobnost.
Podmíněná pravděpodobnost jevu A za předpokladu, že nastal jev B, je definován vztahem
Nelze pochopit (syntaktická chyba): {\displaystyle P(A|B)=\frac{P(A∩B)}{P(B)}}
př. Hod hrací kostkou
Ω={1,2,3,4,5,6}
A={1,2,3}
B={2,4,6}
A ∩ B = 2
Nelze pochopit (syntaktická chyba): {\displaystyle P (A ∩ B)=\frac{1}{6}} (z 6 možných se sejdou 1krát)



Nelze pochopit (syntaktická chyba): {\displaystyle P(A|B)=\frac{P(A∩B)}{P(B)}=\frac{\frac{1}{6}}{\frac{3}{6}}=\frac{1}{6}.\frac{6}{3}=\frac{6}{18}=\frac{1}{3}}
Pravděpodobnost, že nastane jev B i A současně je

Jevy

Jevy jsou podmnožiny množiny všech možných výsledků.
Označují se velkými písmeny A, B, C atd.

Pravděpodobnost náhodného jevu

Pravděpodobnost náhodného jevu A je množinová funkce, která náhodnému jevu A z pole náhodných jevů přiřadí nezáporné číslo, jež označujeme P(A)
Chybná citace: Chybí ukončovací </ref> k tagu <ref> [2]

Závislé a nezávislé jevy

Matematické znaky

Znak Popis
P pravděpodobnost
A jev A, jevy se označují velkými písmeny
P (A) pravděpodobnost jevu A
ω jednotlivé možné výsledky
Ω množina všech možných výsledků náhodného pokusu
m počet všech možných výsledků
A ∩ B průnik jevů A a B
vlastní podmnožina
A ⊆ B každý prvek A je zároveň prvkem B
je prvkem množiny
ω ∈ A výsledek příznivý jevu A
není prvkem množiny
Ø prázdná množina, jev nemožný
S pravděpodobnostní prostor

[3] [2]

  1. KÖNIGOVÁ, Marie.Matematické a statistické metody v informatice: celostátní vysokoškolská učebnice pro stud. obor věd. inf. a knihovnictví. 1. vyd. Praha: Státní pedagogické nakladatelství, 1988, 189 s. Učebnice pro vysoké školy (Státní pedagogické nakladatelství.">
  2. 2,0 2,1 2,2 CALDA, Emil a Václav DUPAČ. Matematika pro gymnázia: kombinatorika, pravděpodobnost, statistika. 4. upr. vyd. Praha: Prometheus, 1999, s. 80-127. Učebnice pro střední školy. ISBN 80-7196-147-7.">
  3. Chybná citace: Chyba v tagu <ref>; citaci označené BUDÍKOVÁ není určen žádný text