Některé typy rozdělení
Verze z 6. 9. 2014, 17:45, kterou vytvořil Dita Lazárková (lazarkovadita@gmail.com) (diskuse | příspěvky) (Založena nová stránka s textem „* 1) rozdělení vlastnosti v rámci zkoumaných souborů : - viz např. histogram – rozdělení na různé míry vlastnosti podle výskytu * 2) rozděle…“)
- 1) rozdělení vlastnosti v rámci zkoumaných souborů
- - viz např. histogram – rozdělení na různé míry vlastnosti podle výskytu
- 2) rozdělení pravděpodobností
- - s jakou pravděpodobností bude mít např. realizace hlásky nějakou vlastnost a s jakou pravděpodobností jí buď nedosáhne, nebo překročí
Obsah
Binomické rozdělení
- proměnná nabývá pouze dvou hodnot
- vzorec (p+p‘)2 = 1
- - součet pravděpodobností obou variant
- - dejme tomu, že z osmi vzorků vyjde 6 výskytů 1. hodnoty a 2 výskyty 2. hodnoty
- - jak je to pravděpodobné?
- - musíme sečíst všechny varianty rozdělení, tedy:
- - p8 + p7p‘ + p6p‘2 + ... + pp‘7 + p‘8
- - předpokládáme stejnou pravděpodobnost pro obě hodnoty (p = p‘ = 0,5)
- - → můžeme zjednodušit na p8 + p8 + ... + p8
- - pomocí kombinací musíme zjistit binomické koeficienty (kolik kombinací o k případech jde vytvořit z množiny n prvků – n nad k)
- - výsledkem je koeficient 28, kterým vynásobíme původní pravděpodobnost, tedy 28 × 0,58 (← 8 vzorků)
- - → pravděpodobnost, že náhodný vzorek 8 výsledků bude 6:2, je cca 11%
- - jaká je pravděpodobnost, že z populace vybereme náhodně 6 případů s jednou hodnotou proměnné a 2 s druhou?
- - 2× vyšší výsledek → 22% (6:2 + 2:6)
- - → jednostranné × dvoustranné testy
- znaménkový test – zjišťuje pravděpodobnost určitého poměru binárních hodnot
- - tzv. kumulativní pravděpodobnost – určitá hodnota + do extrému (tzn. pro pravděpodobnost 4:4 bude p = 1 – vždy je rovno, nebo blíže extrému)
Poissonovo rozdělení
- limitní varianta binomického rozdělení
- binomické rozdělení se Poissonovu podobá tím více, čím více se pravděpodobnost jevu p blíží k nule a počet pozorování n k nekonečnu
- dobrá aproximace už od p ≈ 0,1 a n > 30
- používá se tam, kde se náhodné jevy mohou vyskytnout, ale stává se tak jen zřídka → = „rozdělení vzácných jevů“
- průměr a rozptyl jsou zhruba stejné, = 1 (hodně drobných odchylek, ale žádná velká)
Tvary rozdělení
- rozdělení mohou mít různé tvary → pravděpodobnost zaujímá nějaký prostor
- podle počtu vrcholů (nejčastější hodnota, takový kopečky) – unimodální × bimodální × multimodální
- u-ové – nejčastější krajní hodnoty
- obdélníkové – všechno stejně časté
- podle pozice vrcholu – pozitivně / pravostranně sešikmené (doprava klesá pomaleji) × negativně / levostranně sešikmené
- - musí se určit míra šikmosti, oblast od -1 do +1 se bere jako pořád střed
- podle špičatosti rozdělení (excesu) – ploché (platykurtické) × špičaté (leptokurtické)
Normální rozdělení a z-skóre
- = Gaussovo
- unimodální a symetrické
- sešikmení a špičatost = 0
- na obou stranách se limitně blíží nule
- určeno dvěma veličinami – aritmetickým průměrem (μ) a směrodatnou odchylkou (σ)
- do prostoru 1σ se vejde 68,26% případů, do 2σ 95,44% a do 3σ 99,74%
- je to spojité rozdělení → normalizované z-skóre
- všechna normální rozdělení si jsou podobná → je možné převést na normalizovaná
- → můžeme srovnávat různé jednotky a řády
- od každé naměřené hodnoty x se odečte aritmetický průměr x̅ a vydělí se směrodatnou odchylkou s
- normalizované normální rozdělení má x̅ = 0 a s = 1
- nelineární – např. u výsledků 0,3 + 0,7 a 1,3 + 1,7 zůstává stejné, o kolik od sebe jsou, ale poměry jsou jiné
- 95% případů se vejde do intervalu ± 1,96
- konvertované skóre – z-skóre konvertované do jiné stupnice (→ odstranění desetinných míst a záporných čísel)
- ke všem hodnotám přičteme stejnou konstantu či je vynásobíme – jen se to posune či roztáhne pole
- rozdělení může být deformováno podlahovým či stropovým efektem – všichni jsou lepší / horší než hranice měřené oblasti
- nesymetričnost – např. u počtu hlásek ve slabice nebo slabik ve slově
- normální rozdělení je výhodné → snaha na něj transformovat i nesymetrická:
- - pozitivní sešikmení se opravuje logaritmem, odmocninou či inverzí
- - negativní se opravuje mocninou
Reference
- Volín, J. (2007): Statistické metody ve fonetickém výzkumu. Praha: Epocha.
- Meloun, M. - Militký, J. (2001): Kompendium statistického zpracování dat. Praha: Academia. (vybrané části)
- Robson, C. (1973): Experiment, design and statistics in psychology. Harmondsworth: Penguin Books Ltd.
- Urdan, T. C. (2001): Statistics in plain English. London: Lawrence Erlbaum Associates.
- Lamser, V. - Růžička, L. (1970): Základy statistiky pro sociology. Praha: Svoboda.
Zpět na rozcestník: Statistické metody ve fonetickém výzkumu | Fonetika